Siempre se hay pensado que el hierro y sus aleaciones son unos materiales muy fuertes resistentes, pero estos materiales tienen una gran desventaja: no soportan las altas temperaturas y son sensibles a la corrosión. Esto da pie a buscar la alternativa con otros materiales que resistan temperaturas muy elevadas.
Esto sólo es posible para los nuevos materiales cerámicos. Las uniones atómicas de las cerámicas son mucho más fuertes que la de los metales. Por eso un pieza cerámica es muy eficaz, tanto en dureza como en resistencia a las altas temperaturas y choques térmicos. Además, los componentes cerámicos resisten a los agentes corrosivos y no se oxidan.
Sin embargo no todo es perfecto en estos materiales. En las cerámicas las uniones interatómicas son muy fuertes y rígidas, sin ningún gire errante, por lo que no hay ninguna posibilidad de desplazar algunos de sus átomos sin provocar la ruptura de la unión, por ello una mínima fisura de apenas el grosor de un pelo puede conducir a una catástrofe.
Bajo presión todas las fuerzas de atracción se concentran al final de la línea de la fisura, hasta que se rompen más uniones moleculares, con lo cual la grieta se amplia a una velocidad vertiginosa y la pieza se quiebra. No hay deformación sino fractura. La ruptura de la unión molecular en el hierro exige más energía que el simple desplazamiento de una capa de átomos. La misma grieta en un componente metálico llega a un punto extremo en el que las fuerzas se reparten y al aumentar la fisura hasta fractura de la pieza requeriría casi cien mil veces más energía que la necesaria en una pieza similar de cerámica. Por ello, hoy por hoy, la principal precaución de los investigadores consiste en reducir esa fragilidad.